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Abstract
A general expression is derived for the (paramagnetic) shielding factor for a
nuclear spin embedded in a d-dimensional noninteracting electron gas and a
parabolic quantum dot. We find that for d = 2 the Knight shift has no intrinsic
magnetic field dependence and that for the quantum dot the shift is negligible
unless the nuclear spin is near the centre.

PACS numbers: 0530F, 2110H, 7110C, 7321L

1. Formulation

We shall assume that the interaction of an electron with a nuclear spin, characterized by moment
µN

�I aligned along an externally applied magnetic field �H = Hk̂ is, in all dimensions d � 2,
given by the Fermi contact Hamiltonian

HN = 16π

3
µ0µN

�I · �Sδ(�r) (1)

where µ0 is the Bohr magneton, and �S is the electron spin operator. We identify the Knight
shift with the paramagnetic shielding factor given by Das and Sondheimer [1] in terms of the
Helmholtz free energy F :

σ = − dF

Hd µN

∣∣∣∣
µN=0

. (2)

At temperature zero, the free energy can be expressed in terms of the chemical potential
ζ , particle density n and partition function Z by

F − nζ = − 1

2π i

∫ c+i∞

c−i∞

Z(s)

s2
eζ s ds

Z(s) = Tr{e−(H0+Hz+HN )s}
H0 = 1

2m∗
(

�p − e

c
�A
)2

Hz = 2µ0 �H · �S.

(3)
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We shall ignore the effect of µN on ζ . Then, to linear order in µN , the relevant term in
the free energy, after performing the spin trace, and inverse Laplace transform, is

FN = 8π

3
µ0µN Tr[δ(�r)Xµ0H (ζ − H0)] (4)

where Xa is the characteristic function of the interval [−a, a]. By carrying out the trace over
the eigenstates ψλ(�r), Eλ of H0, we obtain

σ = 8π

3
µ2

0

∑
λ

|ψλ(0)|2 Xµ0H (ζ − Eλ)

µ0H
. (5)

In the zero-field limit, this gives

σ0 = 16π

3
µ2

0

∑
λ

|ψλ(0)|2δ(ζ − Eλ) (6)

from which we easily recover the Towne–Herring–Knight formula [2] σ0 =
(8π/3)χp〈|ψ(0)|2〉F .

Continuing in this vein, and noting that

Xa(z)

a
= 2

∫ c+i∞

c−i∞

sinh(as)

as
ezs

ds

2π i
(7)

we arrive at our basic formula

σ = 16π

3
µ2

0

∫ c+i∞

c−i∞

sinh(µ0Hs)

µ0Hs
eζ s"(0, 0, s)

ds

2π i

"(�r, �r ′, s) =
∑
λ

ψ∗
λ (�r ′)ψλ(�r)e−Eλs .

(8)

2. d-dimensional electron gas

For a d-dimensional (d � 2) electron gas, generalizing Sondheimer and Wilson’s
calculation [3], we have

"(0, 0, s) =
(

m∗

2πh̄2

)d/2
µ∗

0Hs

sinh(µ0Hs)
s−d/2. (9)

Hence, in terms of the effective mass ratio α = m∗/m, we have

σ (d) = 16π

3
µ2

0α

(
m∗

2πh̄2

)d/2 ∫ c+i∞

c−i∞

sinh(µ0Hs)

sinh(µ∗
0Hs)

eζ s

sd/2

ds

2π i
. (10)

For d = 2 it is assumed that the field is normal to the plane of the system. We see that if the
mass ratio is unity, σ has no field dependence other than that introduced through the chemical
potential. For non-integer mass ratio, the Landau level structure is evident in the step-like
behaviour of σ given below. Thus,

σ (d)(α = 1) = 16π

3
µ2

0

(
m

2πh̄2

)d/2
ζ d/2−1

%(d/2)
. (11)

For non-integer α and d > 2,

σ (d) = 16π

3

µ2
0α

%(d/2)

(
m∗

2πh̄2

)3/2

(µ∗
0H)d/2−1

∞∑
n=1

n[(z + α − 2n + 1)d/2−1

−(z − α − 2n + 1)d/2−1 − (z + α − min[z + α, 2n + 1])d/2−1

+(z − α − min[z − α, 2n + 1])d/2−1] (12)
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where z = ζ/µ∗
0H and the d/2 − 1 powers are understood to be 0 if the argument is negative.

The corresponding expression for d = 2 is

σ (2) = 16π

3
µ2

0α

(
m∗

2πh̄2

)3/2 ∞∑
n=0

n['(z + α − 2n + 1)'(2n + 1 − z − α)

−'(z − α − 2n + 1)'(2n + 1 − z + α)]. (13)

For moderate to high fields, we have the alternative representation

σ (d) = 32π

3
µ2

0α

(
m∗

2πh̄2

)d/2
(µ∗

0H)d/2−1

πd/2

∞∑
k=1

(−1)k

kd/2
sin(kπα) sin

[(
kz − d

4

)
π

]
. (14)

3. Parabolic quantum dot

An electron gas in a spherical well having radius R0 will be subject to the harmonic potential

V (r) = 1
2m

∗ω2
0(r

2 + z2) (15)

where ω0 = 1
R0

√
2ζ
m∗ . In terms of the parameters ωc = 2µ0H and + =

√
ω2

0 + ω2
c , we have [4]

"(�r0, �r0, s) =
(
m∗ω0

2πh̄

)1/2 (
m∗+
2πh̄

)
(csch(h̄ω0s))

1/2csch(h̄+s)

× exp

[
−

(
m∗

h̄

)
ωz2

0sech(h̄ω0s/2)

]

× exp

[
−2m∗

h̄
+r2

0

sinh 1
2 h̄(+ + ω0)s sinh 1

2 h̄(+ − ω0)s

sinh h̄+s

]
. (16)

Here, r0 and z0 are the cylindrical coordinates of the nuclear spin site and the magnetic field
is along the z-axis. In the zero-field limit (8) becomes

σ0(z0) = 16π

3

(
m∗ω0

2πh̄

)3/2

µ2
0

∫ c+i∞

c−i∞

eζ s

(sinh h̄ω0s)3/2
e−(m∗ω0z

2
0/h̄)sech(h̄ω0s/2) ds

2π i
. (17)

In the case that the dot radius greatly exceeds the Fermi wavelength, this results in

σ0(z0) = 32
√
π

3
µ2

0

(
m∗

2πh̄2

)3/2

ζ 1/2e− m∗ω0
h̄

z2
0 (18)

showing that the paramagnetic shift decreases dramatically away from the centre of the dot.
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