Knight shift in a d-dimensional electron gas and quantum dot

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 345425
(http://iopscience.iop.org/0305-4470/34/26/311)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.97
The article was downloaded on 02/06/2010 at 09:08

Please note that terms and conditions apply.

Knight shift in a d-dimensional electron gas and quantum dot

M L Glasser
Department of Physics, Clarkson University, Potsdam, New York 13699-5820, USA

Received 21 December 2000
Published 22 June 2001
Online at stacks.iop.org/JPhysA/34/5425

Abstract

A general expression is derived for the (paramagnetic) shielding factor for a nuclear spin embedded in a d-dimensional noninteracting electron gas and a parabolic quantum dot. We find that for $d=2$ the Knight shift has no intrinsic magnetic field dependence and that for the quantum dot the shift is negligible unless the nuclear spin is near the centre.

PACS numbers: 0530F, 2110H, 7110C, 7321L

1. Formulation

We shall assume that the interaction of an electron with a nuclear spin, characterized by moment $\mu_{N} \vec{I}$ aligned along an externally applied magnetic field $\vec{H}=H \hat{k}$ is, in all dimensions $d \geqslant 2$, given by the Fermi contact Hamiltonian

$$
\begin{equation*}
\mathcal{H}_{N}=\frac{16 \pi}{3} \mu_{0} \mu_{N} \vec{I} \cdot \vec{S} \delta(\vec{r}) \tag{1}
\end{equation*}
$$

where μ_{0} is the Bohr magneton, and \vec{S} is the electron spin operator. We identify the Knight shift with the paramagnetic shielding factor given by Das and Sondheimer [1] in terms of the Helmholtz free energy F :

$$
\begin{equation*}
\sigma=-\left.\frac{\mathrm{d} F}{H \mathrm{~d} \mu_{N}}\right|_{\mu_{N}=0} \tag{2}
\end{equation*}
$$

At temperature zero, the free energy can be expressed in terms of the chemical potential ζ, particle density n and partition function Z by

$$
\begin{aligned}
& F-n \zeta=-\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{Z(s)}{s^{2}} \mathrm{e}^{\zeta s} \mathrm{~d} s \\
& Z(s)=\operatorname{Tr}\left\{\mathrm{e}^{-\left(\mathcal{H}_{0}+\mathcal{H}_{z}+\mathcal{H}_{N}\right) s}\right\} \\
& \mathcal{H}_{0}=\frac{1}{2 m^{*}}\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2} \\
& \mathcal{H}_{z}=2 \mu_{0} \vec{H} \cdot \vec{S} .
\end{aligned}
$$

We shall ignore the effect of μ_{N} on ζ. Then, to linear order in μ_{N}, the relevant term in the free energy, after performing the spin trace, and inverse Laplace transform, is

$$
\begin{equation*}
F_{N}=\frac{8 \pi}{3} \mu_{0} \mu_{N} \operatorname{Tr}\left[\delta(\vec{r}) X_{\mu_{0} H}\left(\zeta-\mathcal{H}_{0}\right)\right] \tag{4}
\end{equation*}
$$

where X_{a} is the characteristic function of the interval $[-a, a]$. By carrying out the trace over the eigenstates $\psi_{\lambda}(\vec{r}), \quad E_{\lambda}$ of \mathcal{H}_{0}, we obtain

$$
\begin{equation*}
\sigma=\frac{8 \pi}{3} \mu_{0}^{2} \sum_{\lambda}\left|\psi_{\lambda}(0)\right|^{2} \frac{X_{\mu_{0} H}\left(\zeta-E_{\lambda}\right)}{\mu_{0} H} \tag{5}
\end{equation*}
$$

In the zero-field limit, this gives

$$
\begin{equation*}
\sigma_{0}=\frac{16 \pi}{3} \mu_{0}^{2} \sum_{\lambda}\left|\psi_{\lambda}(0)\right|^{2} \delta\left(\zeta-E_{\lambda}\right) \tag{6}
\end{equation*}
$$

from which we easily recover the Towne-Herring-Knight formula [2] $\sigma_{0}=$ $\left.\left.(8 \pi / 3) \chi_{p}\langle | \psi(0)\right|^{2}\right\rangle_{F}$.

Continuing in this vein, and noting that

$$
\begin{equation*}
\frac{X_{a}(z)}{a}=2 \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{\sinh (a s)}{a s} \mathrm{e}^{z s} \frac{\mathrm{~d} s}{2 \pi \mathrm{i}} \tag{7}
\end{equation*}
$$

we arrive at our basic formula

$$
\begin{align*}
& \sigma=\frac{16 \pi}{3} \mu_{0}^{2} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{\sinh \left(\mu_{0} H s\right)}{\mu_{0} H s} \mathrm{e}^{\zeta s} \Psi(0,0, s) \frac{\mathrm{d} s}{2 \pi \mathrm{i}} \tag{8}\\
& \Psi\left(\vec{r}, \vec{r}^{\prime}, s\right)=\sum_{\lambda} \psi_{\lambda}^{*}\left(\vec{r}^{\prime}\right) \psi_{\lambda}(\vec{r}) \mathrm{e}^{-E_{\lambda} s}
\end{align*}
$$

2. d-dimensional electron gas

For a d-dimensional $(d \geqslant 2)$ electron gas, generalizing Sondheimer and Wilson's calculation [3], we have

$$
\begin{equation*}
\Psi(0,0, s)=\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{d / 2} \frac{\mu_{0}^{*} H s}{\sinh \left(\mu_{0} H s\right)} s^{-d / 2} \tag{9}
\end{equation*}
$$

Hence, in terms of the effective mass ratio $\alpha=m^{*} / m$, we have

$$
\begin{equation*}
\sigma^{(d)}=\frac{16 \pi}{3} \mu_{0}^{2} \alpha\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{d / 2} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{\sinh \left(\mu_{0} H s\right)}{\sinh \left(\mu_{0}^{*} H s\right)} \frac{\mathrm{e}^{\zeta s}}{s^{d / 2}} \frac{\mathrm{~d} s}{2 \pi \mathrm{i}} \tag{10}
\end{equation*}
$$

For $d=2$ it is assumed that the field is normal to the plane of the system. We see that if the mass ratio is unity, σ has no field dependence other than that introduced through the chemical potential. For non-integer mass ratio, the Landau level structure is evident in the step-like behaviour of σ given below. Thus,

$$
\begin{equation*}
\sigma^{(d)}(\alpha=1)=\frac{16 \pi}{3} \mu_{0}^{2}\left(\frac{m}{2 \pi \hbar^{2}}\right)^{d / 2} \frac{\zeta^{d / 2-1}}{\Gamma(d / 2)} \tag{11}
\end{equation*}
$$

For non-integer α and $d>2$,

$$
\begin{align*}
\sigma^{(d)}=\frac{16 \pi}{3} & \frac{\mu_{0}^{2} \alpha}{\Gamma}(d / 2) \\
& -\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{3 / 2}\left(\mu_{0}^{*} H\right)^{d / 2-1} \sum_{n=1}^{\infty} n\left[(z+\alpha-2 n+1)^{d / 2-1}\right. \\
& \left.+(z-\alpha-\min [z-\alpha, 2 n+1])^{d / 2-1}\right] \tag{12}
\end{align*}
$$

where $z=\zeta / \mu_{0}^{*} H$ and the $d / 2-1$ powers are understood to be 0 if the argument is negative.
The corresponding expression for $d=2$ is

$$
\begin{gather*}
\sigma^{(2)}=\frac{16 \pi}{3} \mu_{0}^{2} \alpha\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{3 / 2} \sum_{n=0}^{\infty} n[\Theta(z+\alpha-2 n+1) \Theta(2 n+1-z-\alpha) \\
-\Theta(z-\alpha-2 n+1) \Theta(2 n+1-z+\alpha)] . \tag{13}
\end{gather*}
$$

For moderate to high fields, we have the alternative representation
$\sigma^{(d)}=\frac{32 \pi}{3} \mu_{0}^{2} \alpha\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{d / 2} \frac{\left(\mu_{0}^{*} H\right)^{d / 2-1}}{\pi^{d / 2}} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{d / 2}} \sin (k \pi \alpha) \sin \left[\left(k z-\frac{d}{4}\right) \pi\right]$.

3. Parabolic quantum dot

An electron gas in a spherical well having radius R_{0} will be subject to the harmonic potential

$$
\begin{equation*}
V(r)=\frac{1}{2} m^{*} \omega_{0}^{2}\left(r^{2}+z^{2}\right) \tag{15}
\end{equation*}
$$

where $\omega_{0}=\frac{1}{R_{0}} \sqrt{\frac{2 \zeta}{m^{*}}}$. In terms of the parameters $\omega_{c}=2 \mu_{0} H$ and $\Omega=\sqrt{\omega_{0}^{2}+\omega_{c}^{2}}$, we have [4]

$$
\begin{align*}
\Psi\left(\vec{r}_{0}, \vec{r}_{0}, s\right)= & \left(\frac{m^{*} \omega_{0}}{2 \pi \hbar}\right)^{1 / 2}\left(\frac{m^{*} \Omega}{2 \pi \hbar}\right)\left(\operatorname{csch}\left(\hbar \omega_{0} s\right)\right)^{1 / 2} \operatorname{csch}(\hbar \Omega s) \\
& \times \exp \left[-\left(\frac{m^{*}}{\hbar}\right) \omega z_{0}^{2} \operatorname{sech}\left(\hbar \omega_{0} s / 2\right)\right] \\
& \times \exp \left[-\frac{2 m^{*}}{\hbar} \Omega r_{0}^{2} \frac{\sinh \frac{1}{2} \hbar\left(\Omega+\omega_{0}\right) s \sinh \frac{1}{2} \hbar\left(\Omega-\omega_{0}\right) s}{\sinh \hbar \Omega s}\right] \tag{16}
\end{align*}
$$

Here, r_{0} and z_{0} are the cylindrical coordinates of the nuclear spin site and the magnetic field is along the z-axis. In the zero-field limit (8) becomes

$$
\begin{equation*}
\sigma_{0}\left(z_{0}\right)=\frac{16 \pi}{3}\left(\frac{m^{*} \omega_{0}}{2 \pi \hbar}\right)^{3 / 2} \mu_{0}^{2} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{\mathrm{e}^{\zeta s}}{\left(\sinh \hbar \omega_{0} s\right)^{3 / 2}} \mathrm{e}^{-\left(m^{*} \omega_{0} z_{0}^{2} / \hbar\right) \operatorname{sech}\left(\hbar \omega_{0} s / 2\right)} \frac{\mathrm{d} s}{2 \pi \mathrm{i}} \tag{17}
\end{equation*}
$$

In the case that the dot radius greatly exceeds the Fermi wavelength, this results in

$$
\begin{equation*}
\sigma_{0}\left(z_{0}\right)=\frac{32 \sqrt{\pi}}{3} \mu_{0}^{2}\left(\frac{m^{*}}{2 \pi \hbar^{2}}\right)^{3 / 2} \zeta^{1 / 2} \mathrm{e}^{-\frac{m^{*} \omega_{0}}{h} z_{0}^{2}} \tag{18}
\end{equation*}
$$

showing that the paramagnetic shift decreases dramatically away from the centre of the dot.

References

[1] Das T P and Sondheimer E H 1960 Phil. Mag. 5529
[2] Townes C H, Herring C and Knight W D 1950 Phys. Rev. 77852
[3] Sondheimer E H and Wilson A H 1951 Proc. R. Soc. A 210173
Horing N J M and Sabeeh K 1997 Mod. Phys. Lett. B 111193
[4] Glasser M L 1985 unpublished
Horing N J M and Sabeeh K 1997 Mod. Phys. Lett. B 111193

